PHYSICS ISSUES AT DA PHE 2

Fabio Bossi, LNF

Frascati 6 Novembre 2003

PHYSICS ISSUES AT DA Φ NE 2

- NUCLEON FORM FACTORS (HE)
- KAON PHYSICS (HL)
- HYPERNUCLEAR SPECTROSCOPY (HL)
- HADRONIC CROSS SECTION (HL,HE)

HL = HIGH LUMINOSITY HE = HIGH ENERGY

BARYONS FORM FACTORS

NUCLEON FORM FACTORS IN THE TIME LIKE REGION

Differential x-section:

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 \beta C}{4Q^2} \left[\left| G_M(Q^2) \right|^2 (1 + \cos^2 \theta^*) + \frac{4m_p^2}{Q^2} \left| G_E(Q^2) \right|^2 \sin^2 \theta^* \right]$$

 G_E , G_M complex numbers, <u>need polarization of final state</u> to measure the relative phase

At large Q^2 , $G(Q^2) = G(-Q^2)$

If only valence quarks $G_M(n) = G_M(p) / 2$

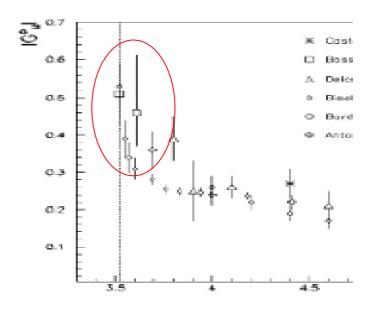
PROTON FORM FACTOR



pQCD fit

 $G(Q^2) = G(-Q^2)$

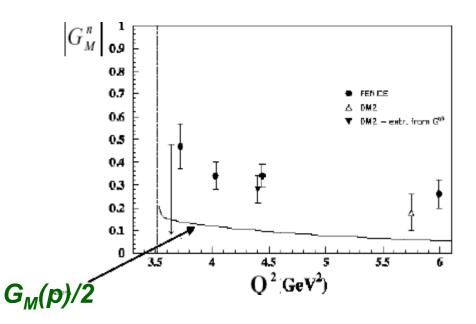
factor 2 from naive prediction!



rapid fall just above threshold

A. De Falco

NEUTRON FORM FACTOR



Data from FENICE only,

74 events, /Ldt = 0.4 pb⁻¹

 $G_M(n) > G_M(p) !$

A. De Falco

Λ FORM FACTOR

Only one existing measurement (DM2) based on 4 events @ 2.4 GeV

EVENT YIELDS

 σ (e⁺e⁻ \rightarrow NN) ~ 0.1 \div 1 nb

400 ÷ 4000 events/day @ present luminosity

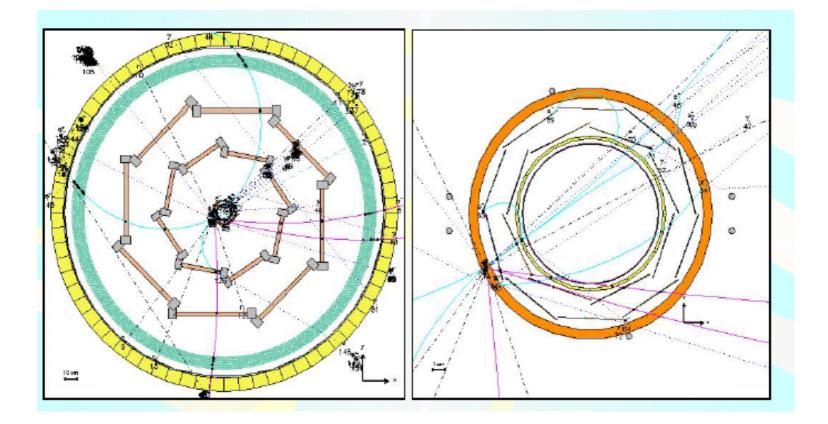
 $\sigma(e^+e^- \rightarrow \Lambda \Lambda) \sim 0.1 \ nb$ 400 events/day @ present luminosity

FINUDA estimates efficiencies ranging between $(5 \div 40)\%$ for nucleons (no idea for Λ 's) (A. Filippi)

Major limitation of FINUDA present setup is limited angular acceptance (KLOE has full solid angle coverage)

FINUDA might measure p polarization! (A. Filippi)

FINUDA TYPICAL EVENT



 $e^+e^- \rightarrow n\bar{n}$ $\sqrt{s} = 1890 \text{ MeV}$

A. Filippi

MY CONCLUSIONS ON BARYON F.F.

NUCLEON F.F. CAN BE MEASURED WITH UNPRECEDENTED PRECISION AT D2 AS LONG AS $L > few 10^{31}$

DISCRIMINATION BETWEEN NN AND $\gamma\gamma$ EVENTS (B/S ~ 4) BASED ON TIMING MIGHT RESULT VERY DIFFICULT DUE TO HIGH BUNCH X-ING RATE IN DA Φ NE

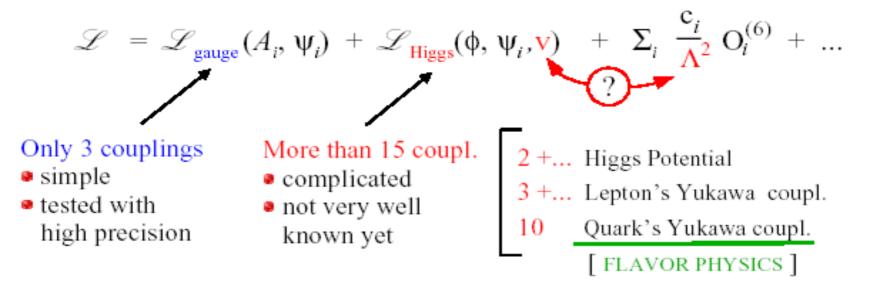
LAMBDA F.F. MEASUREMENT SHOULD BE PURSUED \rightarrow S > 2.4 GeV

KAON PHYSICS

Rare K decays & Flavor Physics

G. Isidori

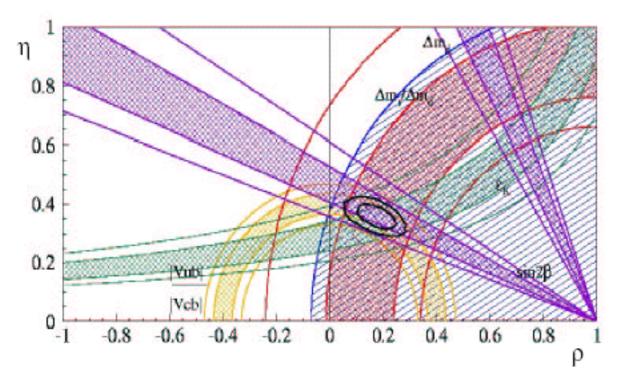
The SM can be considered as the *renormalizable part* of an effective field theory, valid up to a (still undetermined) cut-off scale Λ :



Quark-flavor mixing is a key ingredient to understand the symmetry-breaking sector of the SM and, possibly, to provide an indirect indication about the value of Λ

The Flavor Problem:

Available data on $\Delta F=2$ FCNC amplitudes (meson-antimeson mixing) already provides serious constraints on the scale of New Physics...



e.g.:

$$K^0 - \overline{K}^0$$
 mixing
 \downarrow
 $\Lambda \ge 100 \text{ TeV}$
for $O^{(6)} \sim (\overline{s}d)^2$

much more severe than bounds on the scale of flavor-conserving operators from e.w. precision data

...while a natural stabilization of the Higgs potential $\Rightarrow \Lambda \sim 1 \text{ TeV}$

After the recent precise data from *B* factories, it is more difficult [although not impossible...] to believe that this is an accident

G. Isidori

G. Isidori			decreasing SM contrib.	
		$b \to s ~({\sim}\lambda^2)$	$b \to d ~(\sim \lambda^3)$	$s\rightarrow d~(\sim \lambda^5)$
	$\Delta F=2$ box	$\begin{array}{l} \Delta M_{Bs} \\ A_{CP}(B_s {\rightarrow} \psi \phi) \end{array}$	$\begin{array}{l} \Delta M_{Bd} \\ A_{CP}(B_d {\rightarrow} \psi K) \end{array}$	ΔM_{K} ϵ_{K}
decrea- sing SM contrib.	$\Delta F=1$ 4-quark box	$B_d \rightarrow \phi K, B_d \rightarrow K \pi,$	$B_d \rightarrow \pi \pi, B_d \rightarrow \rho \pi,$	ε'/ε, K→3π,
	gluon penguin	$B_d \rightarrow X_s \gamma, \ B_d \rightarrow \phi K, \\ B_d \rightarrow K \pi,$	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi,$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^+ l^-, \dots$
	γ penguin	$\begin{split} \mathbf{B}_{\mathbf{d}} &\rightarrow \mathbf{X}_{\mathbf{s}} l^{\dagger} l^{\cdot} \mathbf{B}_{\mathbf{d}} &\rightarrow \mathbf{X}_{\mathbf{s}} \gamma \\ \mathbf{B}_{\mathbf{d}} &\rightarrow \phi \mathbf{K}, \mathbf{B}_{\mathbf{d}} &\rightarrow \mathbf{K} \pi, \dots \end{split}$	$\begin{split} & \mathbf{B}_{\mathbf{d}} {\rightarrow} \mathbf{X}_{\mathbf{d}} l^{\dagger} l^{\cdot} \mathbf{B}_{\mathbf{d}} {\rightarrow} \mathbf{X}_{\mathbf{d}} \boldsymbol{\gamma} \\ & \mathbf{B}_{\mathbf{d}} {\rightarrow} \pi \pi, \dots \end{split}$	$\varepsilon'/\varepsilon, K_L \rightarrow \pi^0 l^* l$,
	Z ⁰ penguin	$\begin{split} &\mathbf{B}_{\mathbf{d}}{\rightarrow}\mathbf{X}_{\mathbf{s}}l^{\dagger}l^{\cdot},\mathbf{B}_{\mathbf{s}}{\rightarrow}\mu\mu\\ &\mathbf{B}_{\mathbf{d}}{\rightarrow}\phi\mathbf{K},\mathbf{B}_{\mathbf{d}}{\rightarrow}\mathbf{K}\pi, \end{split}$	B_d → X_d <i>l[†]l</i> , B_d →μμ B_d →ππ,	$\begin{array}{c} \varepsilon'/\varepsilon, K_L \rightarrow \pi^0 l^+ l^-, \\ K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu, \dots \end{array}$
	H ⁰ penguin	$\mathrm{B}_{s}{\rightarrow}\mu\mu$	Β _d →μμ	$K_{L,S} \rightarrow \mu \mu$

= Theoretical error < 10%



Outlook for $K \rightarrow \pi \nu \bar{\nu}$ measurements

E787: completed

E949: Approved by DOE(1999), DOE halts HEP at AGS(2002), awaiting funding to continue

CKM: Stage I approval(2001), data taking in 2009(?) KOPIO: Approved by NSF(2003), construction start in 2005

Stopped by DOE !

D. Jaffe

$K_L \Rightarrow \pi^0 v v$ at a Φ factory?

A Φ -factory is naturally suited for this search since:

- Kaons are tagged
- Kaons 4-momentum is known (reconstruction of decay kinematics allowed)
- Beam free of neutral baryons backg.

Production rate: $10^{6} \text{ K}_{\text{S}}\text{-}\text{K}_{\text{L}}$ pairs / pb⁻¹ 1 year @ $10^{35} \text{ cm}^{-2}\text{s}^{-1}$: $10^{12} \text{ K}_{\text{L}}$ produced observed decays: $30 * \varepsilon_{\text{tot}}$ / year (SM) *must be* $\varepsilon_{\text{tot}} \ge 10\%$

F. Bossi

Conclusions

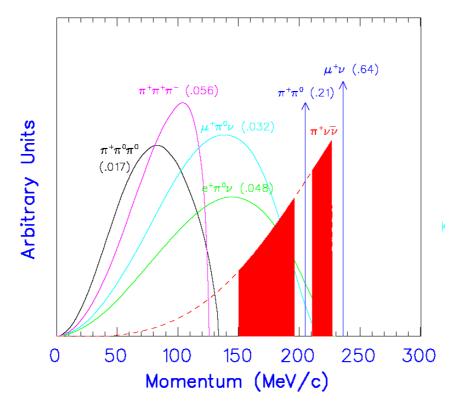
Physics & Machine

Detector

§ The search for $K_{L} \rightarrow \pi^{0}vv$ requires luminosities of order 10^{35} cm⁻²s⁻¹ § The large x-ing angle option, although fascinating, seems to present some major disadvantage in terms of tagging wrt to the conventional one § Beam related backgounds have to be kept under control

 § Supplementary investigations needed on photon detection efficiency
 § Tagging, trigger, and t₀ determination are an issue

CONCLUSIONS ON $K^{\pm} \rightarrow \pi^{\pm} \nu \nu$ WITH KLOE



A KLOE-like detector can probably reach a sound rejection factor to address $K^{\pm} \rightarrow \pi^{\pm} \nu \nu$. **Minimum luminosity should be 10**³⁵. Should add a micro-vertex. Should add a non- γ -distructive $\pi\mu$ separation system

P. Franzini

$K^{\pm 0} \rightarrow \pi^{\pm 0} \nu \overline{\nu}$ cannot be measured

- 1. Cannot compete with hadron machines. KAMI: $4 - 7 \times 10^{13} K_L$ decays/y in detector. ϕ -factory @ $\mathcal{L}=10^{35}$ cm⁻² s⁻¹; $2 - 3 \times 10^{11} K_L$ dec/y.
- 2. E787 (2 ev) has collected $6 \times 10^{12} K^+$ decays. E949 should improve by a factor 5, but no AGS. CKM improve by another factor 10, but recently put on hold.
- 3. K^{\pm} experiments need strong pion ID or muon rejection. Efficiencies of few % are conceivable at higher p_{μ} . Still need $\mathcal{L}>10^{36}$.
- 4. A new limit has little value. Must measure BR.

P. Franzini

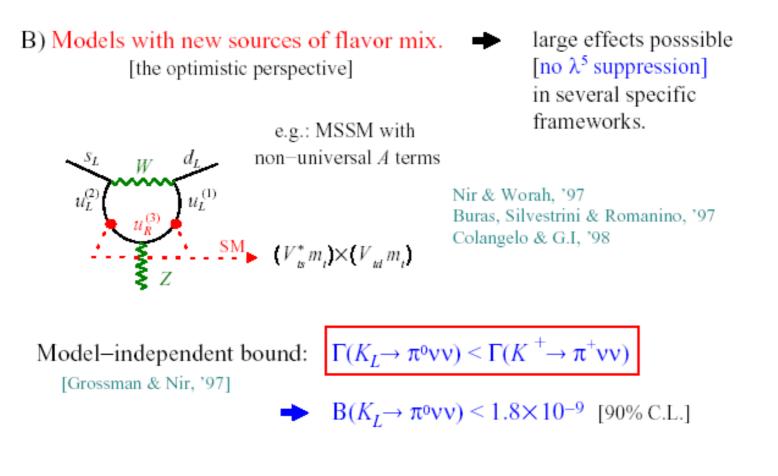
- 5. 8 years ago, I did believe $K \rightarrow \pi \nu \nu$ was fundamental. Today I do not think so.
- 6. Too bad

$$\frac{J_{12}}{\lambda(1-\lambda^2/2)} \xrightarrow{h=A^2\lambda^5\eta \ (\times 10)} \sum$$

To get η need λ and A!

 $\delta(A^2\lambda^5)/(A^2\lambda^5) \sim 5.6\%$, K. Schubert, LP03. Optimistic?

...but still remember



Two orders of magnitudes above the SM: a wide unexplored region of possible exciting new phenomena...

G. Isidori

P. Franzini

KLOE at DAΦNE2

- $\Delta S = \Delta Q$, use charge exchange, $K^+ \Rightarrow K^0$, $K^- \Rightarrow K^0$ to tag strangeness.
- Use (interference) to measure $\Re \eta_{+-} \dots \Im \eta_{00}, \Im \delta$
- K_S , and K_L , leptonic asymmetry $\rightarrow \Re \delta$. This would be the first look at the Plank scale in particle physics.
- \bullet Push all modes to the limit, $\sim 10^{-(10-11)}$

Kaon interferometry: what can be measured A. Di Domenico

Double differential time distribution:

$$\begin{split} I(f_1, t_1; f_2, t_2) &= C_{12} \left\{ \left| \eta_1 \right|^2 e^{-\Gamma_L t_1 - \Gamma_S t_2} + \left| \eta_2 \right|^2 e^{-\Gamma_S t_1 - \Gamma_L t_2} - 2 \left| \eta_1 \right| \left| \eta_2 \right| e^{-(\Gamma_S + \Gamma_L)(t_1 + t_2)/2} \cos[\Delta m(t_1 - t_2) + \phi_2 - \phi_1] \right] \\ \text{where } t_1(t_2) \text{ is the time of one (the other) kaon decay into } f_1(f_2) \text{ final state and:} \\ \eta_i &= \left| \eta_i \right| e^{i\phi_i} = \left\langle f_i \left| K_L \right\rangle / \left\langle f_i \right| K_S \right\rangle \quad C_{12} = \frac{N^2}{2} \left| \left\langle f_1 \right| K_S \right\rangle \left\langle f_2 \left| K_S \right\rangle \right|^2 \\ characteristic interference term \\ at a \phi-factory => interferometry \\ \text{Integrating in } (t_1 + t_2) \text{ we get the time difference } (\Delta t = t_1 - t_2) \text{ distribution } (1-\text{dim plot}): \\ I(f_1, f_2; \Delta t \ge 0) = \frac{C_{12}}{\Gamma_S + \Gamma_L} \left| \eta_1 \right|^2 e^{-\Gamma_L \Delta t} + \left| \eta_2 \right|^2 e^{-\Gamma_S \Delta t} - 2 \left| \eta_1 \left| \eta_2 \right| e^{-(\Gamma_S + \Gamma_L)\Delta t/2} \cos(\Delta m \Delta t + \phi_2 - \phi_1) \right| \\ \text{for } \Delta t < 0 \quad \Delta t \rightarrow \left| \Delta t \right| \text{ and } 1 \leftrightarrow 2 \end{split}$$

From these distributions for various final states f_i we can measure the following quantities:

$$\Gamma_S$$
, Γ_L , Δm , $|\eta_i|$, $\arg(\eta_i) = \phi_i$

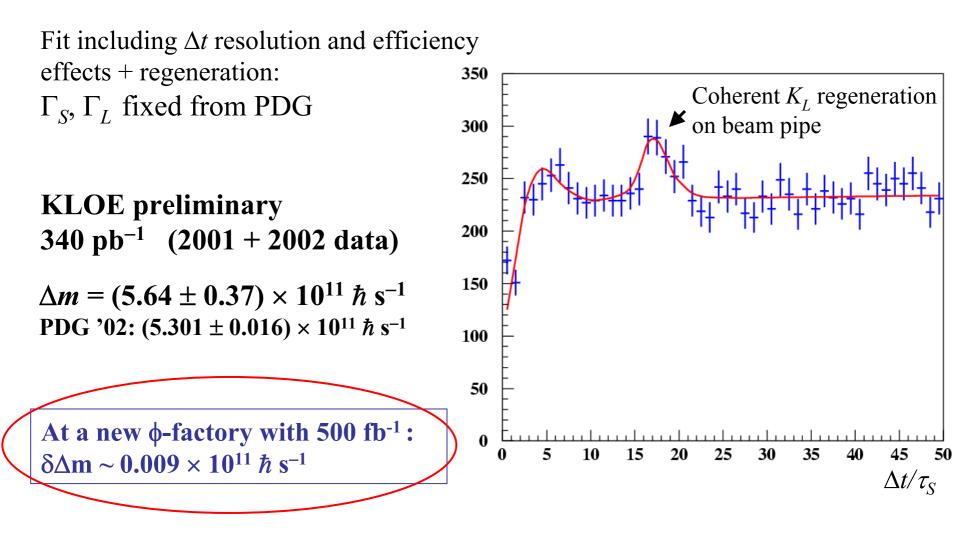
Kaon interferometry: main observablesA . Di Domenico

$$\begin{array}{cccc} \text{mode} & \text{measured quantity} & \text{parameters} \\ \phi \to K_S K_L \to \pi^+ \pi^- \pi^+ \pi^- & I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta > 0) - I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta < 0) & \Delta m & (\Gamma_S - \Gamma_L) \\ \phi \to K_S K_L \to \pi^+ \pi^- \pi^0 \pi^0 & A(\Delta t) = \frac{I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta > 0) - I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta t < 0)}{I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta t > 0) + I(\pi^+ \pi^-, \pi^0 \pi^0; \Delta t < 0)} & \Re\left(\frac{\varepsilon'}{\varepsilon}\right) & \Im\left(\frac{\varepsilon'}{\varepsilon}\right) \\ \phi \to K_S K_L \to \pi \ell \nu & \pi \ell \nu & A_{CPT}(\Delta t) = \frac{I(\pi^- e^+ \nu, \pi^+ e^- \overline{\nu}; \Delta t > 0) - I(\pi^- e^+ \nu, \pi^+ e^- \overline{\nu}; \Delta t < 0)}{I(\pi^- e^+ \nu, \pi^+ e^- \overline{\nu}; \Delta t > 0) + I(\pi^- e^+ \nu, \pi^+ e^- \overline{\nu}; \Delta t < 0)} & \Re \delta_K - \Re\left(\frac{d^*}{a}\right) \\ & \Im \delta_K + \Im\left(\frac{c^*}{a}\right) \\ \phi \to K_S K_L \to \pi \pi & \pi \ell \nu & A(\Delta t) = \frac{I(\pi^- e^+ \nu, \pi^+ \pi^-; \Delta t) - I(\pi^+ e^- \overline{\nu}, \pi^+ \pi^-; \Delta t)}{I(\pi^- e^+ \nu, \pi^+ \pi^-; \Delta t) + I(\pi^+ e^- \overline{\nu}, \pi^+ \pi^-; \Delta t)} & \phi_{\pi \pi} \\ & A = 2(m_\pi - m_\pi + m_\pi) I(\pi + m_\pi) I^*(\pi + m_\pi)$$

 $A_{L} = 2(\Re \varepsilon_{K} - \Re \delta_{K} + \Re b/a + \Re d^{*}/a)$

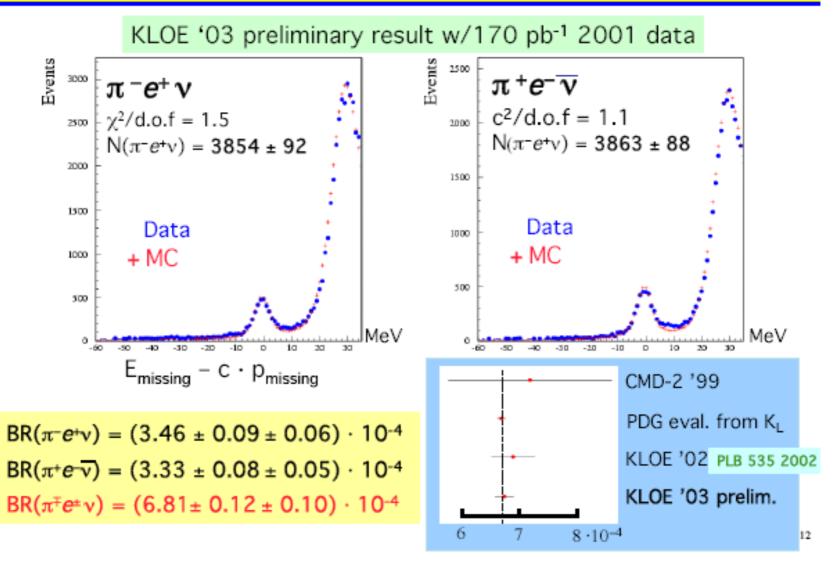
$$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \ \pi^+ \pi^-$$

A . Di Domenico



S. Dell'Agnello

 $BR(K_S \rightarrow \pi e \nu)$



BR(K_S $\rightarrow \pi ev$): charge asymmetry

Matrix elements of semil. decays $\begin{array}{l} \left\langle \pi^{-}e^{+}\nu \mid H_{W} \mid \mathbf{K}^{0} \right\rangle = a + b \\ \left\langle \pi^{+}e^{-}\overline{\nu} \mid H_{W} \mid \mathbf{K}^{0} \right\rangle = a^{*} - b^{*} \\ \left\langle \pi^{+}e^{-}\overline{\nu} \mid H_{W} \mid \mathbf{K}^{0} \right\rangle = c + d \\ \left\langle \pi^{+}e^{-}\overline{\nu} \mid H_{W} \mid \mathbf{K}^{0} \right\rangle = c + d \\ \end{array}$

$$\left\langle \pi^{-}e^{+}\nu \left| H_{W} \right| \overline{\mathbf{K}^{0}} \right\rangle = c^{*} - d^{*}$$

$$A = \frac{\Gamma(\pi^- e^+ \nu) - \Gamma(\pi^+ e^- \overline{\nu})}{\Gamma(\pi^- e^+ \nu) + \Gamma(\pi^+ e^- \overline{\nu})}$$

 $A_S - A_L = 4Re \ \delta_K - 4Re \ d^*/a = 0$ implies CPT violation

KLOE preliminary $A_s = (19 \pm 17 \pm 6) \cdot 10^{-3}$ First measurement of $A_s!$ SymmetryConstraintsTIm a = Im b = Im c = Im d = 0CPIm a = Re b = Im c = Re d = 0CPTb = d = 0 $\Delta S = \Delta Q$ c = d = 0

$$A_{S} = 2(\operatorname{Re} \varepsilon_{K} + \operatorname{Re} \delta_{K} + \operatorname{Re} b/a - \operatorname{Re} d^{*}/a)$$
$$A_{L} = 2(\operatorname{Re} \varepsilon_{K} - \operatorname{Re} \delta_{K} + \operatorname{Re} b/a + \operatorname{Re} d^{*}/a)$$

Compare to A_L w.a. $A_L = (3.322 \pm 0.055) \cdot 10^{-3}$ $A_L = A_S = 2 \text{ Re } \varepsilon_K$ if CPT conserved

CPLEAR PL B444 1998 Re $\delta_{K} = (2.9 \pm 2.7) 10^{-4}$

S. Dell'Agnello

The KAON system already provides the strongest upper bound on CPT conjugates states

 $\Delta M_{K} / M_{K} < 10^{-18}$

To improve on this one should aim at measuring δ with a precision of ~ 10⁻⁵ or better which implies ~10⁹ K_S semileptonic decays

@ 5 10³⁴ one gets ~ 3 10⁸ K_S $\rightarrow \pi e \nu$ decays/year (and b.t.w. ~ 1000 K_S $\rightarrow 3\pi^0$ decays/year)

Efficiencies have to be applied but note that precision scales with $\sqrt{N_{ev}}$

Conclusions: detector upgrades @D2

- Just an exercise for future discussion/work
- If IR-D2 smaller, we can consider a compact inner vertex detector inside the Drift Chamber (r=10-25cm)
 - add z measurement !!! Helps pattern recognition
 - improves vertexing at IP and interferometry for all-track events like $K_LK_S \rightarrow \pi^+\pi^- \pi^+\pi^-$ and $K_LK_S \rightarrow \pi ev \pi^+\pi^-$
 - helps ID Kaon interactions (esp. Q-exch.) in the inner DC wall
 - if beam pipe were pure Be: big bonus for reconstruction
 - if pure Be sphere difficult ⇒ make a cylinder w/same radius
 - QCAL experience will be useful; can make new QCAL smaller
- Calorimeter: increasing readout granularity would improve clustering and enhance PID
- Current drift chamber upgrade w/new ADCs (enhances e/π but also) helps π/μ separation in K⁰ decays

S. Dell'Agnello

HYPERNUCLEAR SPECTROSCOPY

OPEN QUESTIONS

A. Feliciello

(low-energy) YN (YY) interaction

- > detailed knowledge of the hypernuclear fine structure
 - \rightarrow evaluation of the spin dependent terms of the AN interaction
- > measurement of angular distribution and polarization of γ -rays
 - \rightarrow determination of spin and parity of each observed level

Impurity nuclear physics

- > measurement of transition probability B(E2)
 - \rightarrow information on the size and deformation of hypernuclei
 - \rightarrow measurement of nucleus core shrinking \rightarrow glue role of Λ

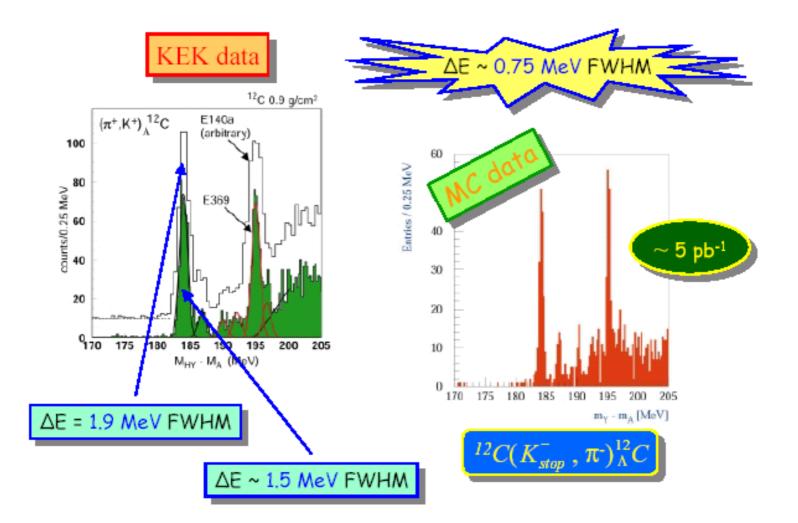
Properties of hyperons in nuclear matter (medium effect)

measurement of transition probability B(M1)

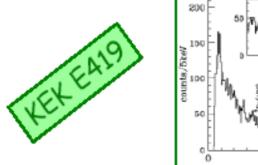
 \rightarrow g-factor value for \wedge in nuclear matter

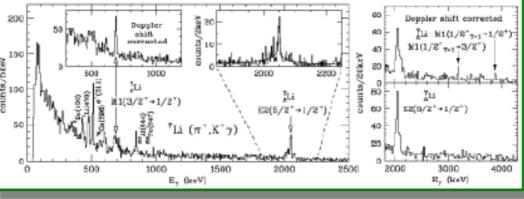
FINUDA IS COMING!

A. Feliciello



ONE STEP BEYOND: γ **SPECTROSCOPY**





Precise hypernuclear γ-spectroscopy has been established as new frontier in strangeness nuclear physics

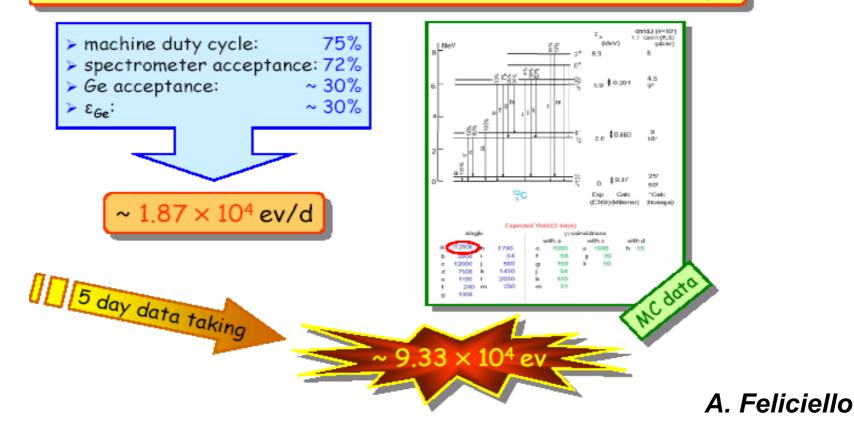
NEED HIGH LUMINOSITY DUE TO LOW EVENT RATES (AND LOW DETECTOR EFFICIENCIES)

A. Feliciello

FINUDA WITH GERMANIUM DETECTOR

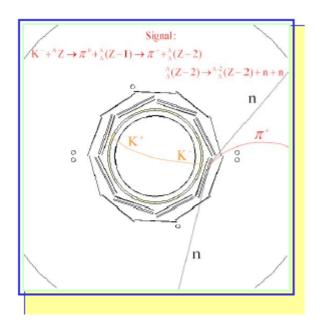
SLIGHTLY REDUCED DETECTOR ACCEPTANCE

@ $\mathcal{L} = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$ FINUDA can observe ~ $1.6 \times 10^{4} \text{ ev/h}$ from YN g.s.



PRODUCTION OF NEUTRON RICH HYPERNUCLEI

V. Paticchio



- Search for the existence of neutron-rich hypernuclei
- Exotic nuclear matter, with extreme N/Z ratio $({}^{7}_{\Lambda}H, {}^{6}_{\Lambda}H, {}^{12}_{\Lambda}Be)$
- Study of mass distributions more extended than ordinary nucleus
- Study of the effect of Λ hyperon on neutron-halo
- Interest of astrophysics to explain various phenomena of high density matter in neutron-star

Typical counting rate with FINUDA @ 10³⁴ : 130 ev/h

HADRONIC CROSS SECTION

Muon - Anomaly

Motivation: Determination of Hadronic Vacuum Polarization = High Precision Test of the Standard Model:

• Anomalous magnetic moment of the muon $a_{\mu} = (g-2)_{\mu}$

• Running Fine Structure Constant at Z^0 -mass α_{QED} (M_Z)

(q - 2) = 0Dirac-Theory: Quantum Corrections: $(g - 2) \neq 0$ due to corrections of:

- electromagnetic Interaction
- weak Interaction
- strong Interaction (and maybe **NEW PHYSICS** ???)

$$a_{O} = (g_{O} - 2) / 2 = \mathfrak{O} 2 \square + \dots$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{QED}} + a_{O}^{\text{had}} + a_{O}^{\text{weak}} + a_{O}^{\text{new}}$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{QED}} + a_{O}^{\text{had}} + a_{O}^{\text{weak}} + a_{O}^{\text{new}}$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{QED}} + a_{O}^{\text{had}} + a_{O}^{\text{mew}} + a_{O}^{\text{new}}$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{QED}} + a_{O}^{\text{had}} + a_{O}^{\text{mew}} + a_{O}^{\text{new}}$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{QED}} + a_{O}^{\text{had}} + a_{O}^{\text{mew}} + a_{O}^{\text{new}}$$

$$a_{O}^{\text{theor}} = a_{O}^{\text{theor}} + a_{O}^{t$$

Error of hadronic contribution is dominating total Error !

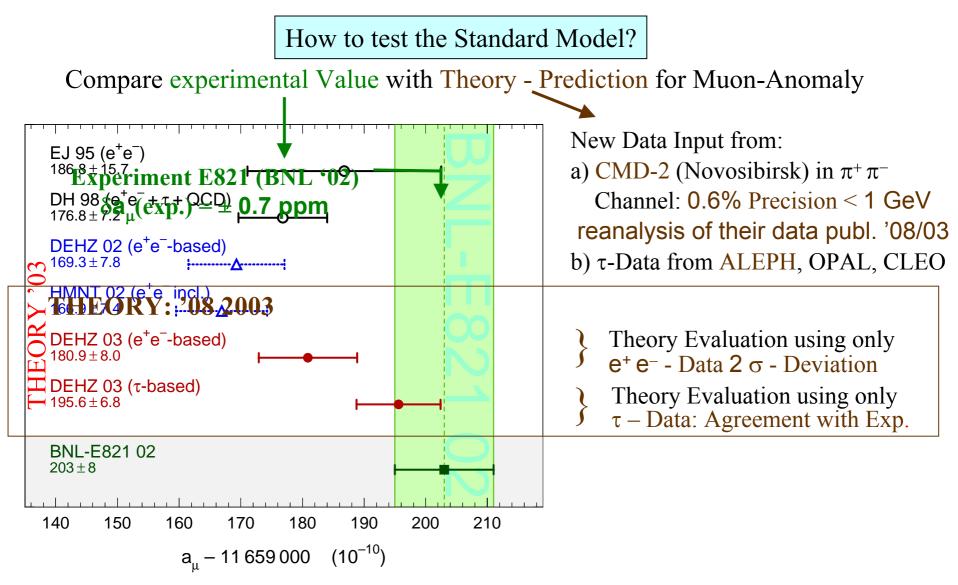
 $\vec{\mathsf{B}}_{-}$

a

hadrons

field

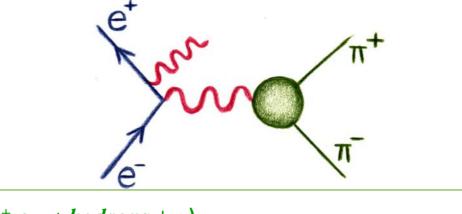
Status: Muon - Anomaly



RADIATIVE RETURN @ KLOE & BABARS. Müller

Particle factories have the opportunity to measure the cross section $\sigma(e^+ e^- \rightarrow hadrons)$

as a function of the hadronic c.m.s energy M²_{hadrons} by using the <u>radiative return</u>.



 $M^{2}_{hadr} \frac{d\sigma(e^{+} e^{-} \rightarrow hadrons + \gamma)}{dM^{2}_{hadrons}} = \sigma(e^{+} e^{-} \rightarrow hadrons) H(M^{2}_{hadr}, \cos\theta_{\gamma \min})$

This method is a complementary approach to the standard energy scan. It requires precise calculations of the radiator H.

→ EVA + Phokhara MC Generator

(S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999)

(H. Czyz, A. Grzelinska, J.H. Kühn, G. Rodrigo, hep-ph/0308312)

Preliminary KLOE value for $a_{\mu} \times 10^{10}$

$$\mathbf{a}_{\mathbf{O}}^{\pi\pi} \propto \int_{0.37}^{0.95} \mathbf{ds} \sigma(\mathbf{e}^{\scriptscriptstyle +}\mathbf{e}^{\scriptscriptstyle -} \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}) \cdot \mathbf{K}(\mathbf{s})$$

In order to see how KLOE data compares with existing e^+e^- data from CMD-2 we have integrated the bare cross section according to the dispersion integral in the energy range $0.37 < M_{\pi\pi}^2 < 0.93$ GeV²

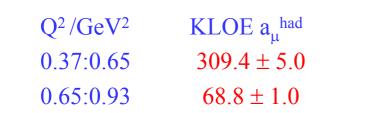
KLOE:

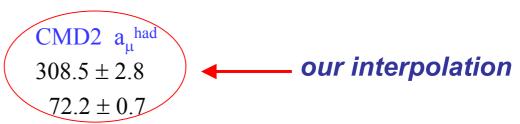
$$a_{\mu}^{\pi\pi}$$
 = 378.4 ± 0.8_{stat} ± 4.9_{syst} ± 4.5_{theo}
CMD-2:
 $a_{\mu}^{\pi\pi}$ = 378.6 ± 2.7_{stat} ± 2.3_{syst}

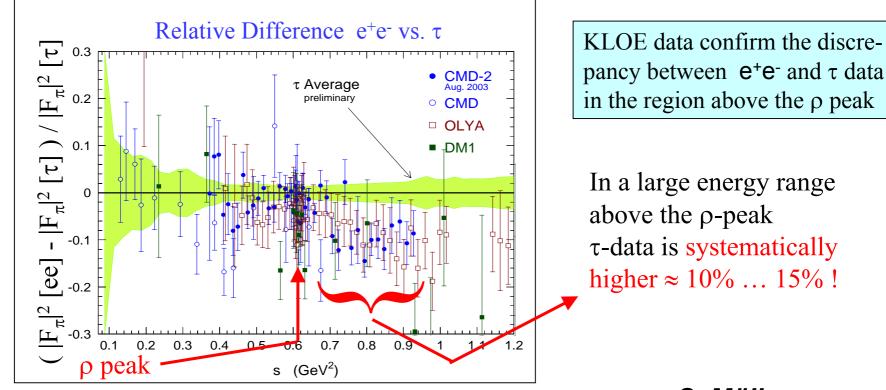
The two numbers are compatible given the systematic error, but FSR corrections must be refined with the new version of Phokhara

S. Müller

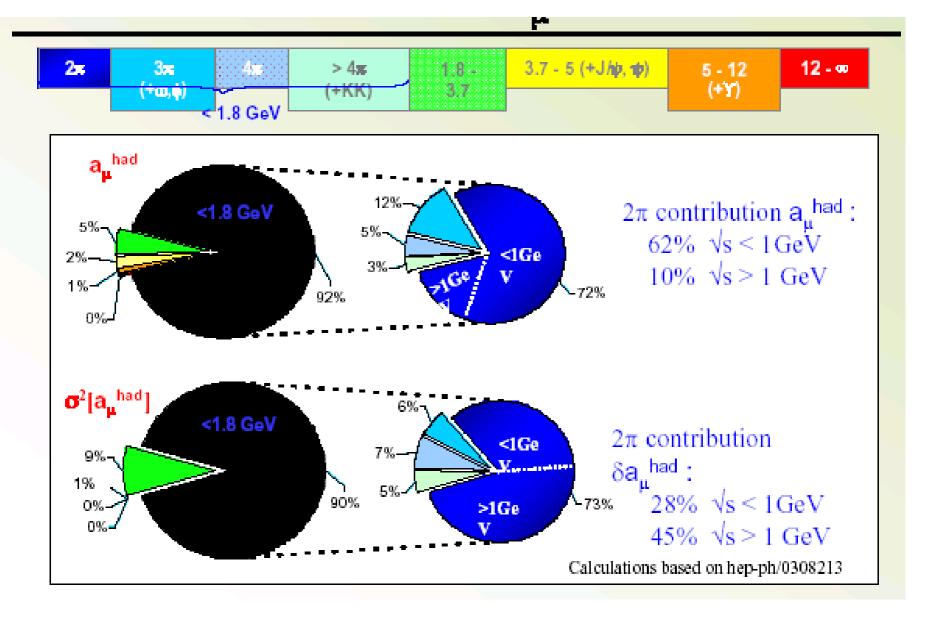
e^+e^- - versus τ - Data







S. Müller



- The energy range 1 2 GeV is crucial for an improvement on the theoretical knowledge of a_u
- 2 Pion Channel > 1GeV is now giving the largest contribution to the error of a_μ^{hadr}
- 3 Pion Channel and even much more 4 Pion Channel are poorly known and need to be measured > 1 GeV
- Actual / Future Measurements from:
 - BABAR:Rad. Returnall channels (E. Solodov)- VEPP-2000:Energy Scanall channels (A. Sibidanov)
 - DAФNE-2

Energy Scan or Rad. Return ???

Radiative Return vs. Energy Scan

Energy Scan seems the natural way of measuring hadronic cross sections, experience at DAΦNE has shown that the Radiative Return has to be considered as a complementary approach

Advantages:

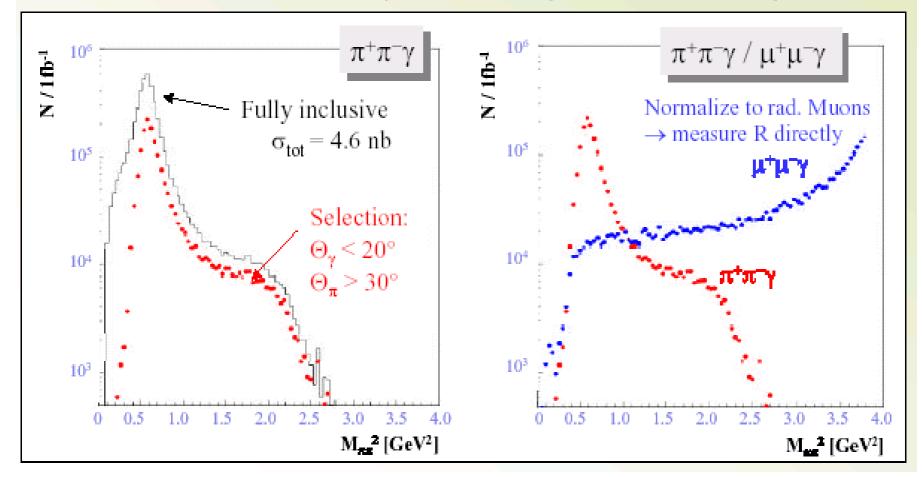
- Data comes as a by-product of the standard program of the machine
- Systematic errors from Luminosity, √s, rad. corrections... enter only once and do not have to be studied for each point of s

Disadvantages:

- Requires a precise theoretical calculation of the Radiator Function
- Requires good suppression (or under= standing) of Final State Radiation (FSR); the model of scalar QED used so far can be tested however by measuring the charge asymmetry
- Needs high integrated Luminosity; for 2-Pion-channel at DAΦNE-1 no problem, but might become critical for low hadr. cross-sections

Radiative Return $2\pi\gamma$ (a) $\sqrt{s} = 2 \text{ GeV}$

- Preliminary MC Study with Event-Generator Phokhara vs 3.0
- Plotted are the Number of $\pi^+\pi^-\gamma$ events / 1 fb⁻¹ (Bin width = 0.04GeV²)



CONCLUSIONS ON σ_{HAD}

- □ Right now 2.0 σ deviation between theory and experiment for the anomalous magnetic moment of the muon \rightarrow needs clarification !
- □ For a future improved evaluation of a_{μ} the measurement of the hadronic cross section in the energy range 1 - 2 GeV with a precision O (1%) is of great importance: Goal to reach $\delta a_{\mu}^{hadr} \approx 2...3 \times 10^{-10}$
- 2 Pion Channel < 1 GeV still very interesting in order to understand the θ⁺θ⁻ - τ - puzzle (energy scan as cross check?)
- θ At DA Φ NE 2 the radiative return seems a feasable option if the energy of the machine cannot be tuned for an energy scan